Handwritten Character Recognition using Deep Learning and Neural Network
نویسندگان
چکیده
منابع مشابه
Arabic Handwritten Alphanumeric Character Recognition Using Very Deep Neural Network
The traditional algorithms for recognizing handwritten alphanumeric characters are dependent on hand-designed features. In recent days, deep learning techniques have brought about new breakthrough technology for pattern recognition applications, especially for handwritten recognition. However, deeper networks are needed to deliver state-of-the-art results in this area. In this paper, inspired b...
متن کاملOffline Handwritten Character Recognition using Neural Network
The offline character recognition is very useful software in the field of research. Authoritative field of research has made by character recognition due to its need in various fields of research as in banks, post offices to fulfill all recognition requirements. This paper is an exploration on the different scripts including Mathematical digits, Hindi consonants and vowels, Gurumukhi characters...
متن کاملOffline Handwritten Character Recognition Using Neural Network
This paper is aimed at recognition of offline handwritten characters in a given scanned text document with the help of neural networks. Image preprocessing, segmentation and feature extraction are various phases involved in character recognition. The first step is image acquisition followed by noise filtering, smoothing and image normalization of scanned image. Segmentation decomposes image int...
متن کاملHandwritten English Character Recognition Using Neural Network
In this paper, work has been performed to recognize Handwritten English Character using a multilayer perceptron with one hidden layer. The feature extracted from the handwritten character is Boundary tracing along with Fourier Descriptor. Character is identified by analyzing its shape and comparing its features that distinguishes each character. Also an analysis was carried out to determine the...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Advanced Research in Science, Communication and Technology
سال: 2021
ISSN: 2581-9429
DOI: 10.48175/ijarsct-1404